
Symmetric - Secret Key Encryption

Cryptography: Information confidentiality, integrity, authenticity,
and person identification

Symmetric cryptography --------------------- Asymmetric cryptography

Symmetric encryption
H-functions, Message digest
HMAC H-Message Authentication Code

Asymmetric encryption
E-signature - Public Key Infrastructure - PKI
E-money, cryptocurrencies
E-voting
Digital Rights Management - DRM
Etc.

Symmetric ciphers

Block Ciphers Stream Ciphers

100_003 Introd_Crypto

 100_003 Introd_Crypto Page 1

Vernam cipher

Block cipher AES - 128, 192, 256 --> Encryption --> Decryption

Block Cipher: Electronic Code Book -ECB mode of encryption

 100_003 Introd_Crypto Page 2

PrK and PuK are related
PuK = F(PrK)

F is one-way function - OWF:
It is erasy to compute PuK when F and
PrK are given.
Kerchoff principe.

Having PuK and F, it is infeasible to
find PrK = F-1(PuK).

PrK = x <-- randi ==> PuK = a = gx mod p

Asymmetric cryptography

Stream Cipher - Vernam Cipher - One-Time Pad

Public Parameters PP = (p, g)

 100_003 Introd_Crypto Page 3

>> p=genstrongprime(28) a = gx mod p

>> p=127
p = 127
>> g = 23
g = 23
>> x=0:p-1;
>> a=mod_expv(g,x,p)
>> comet(x,a)

>> pi
ans = 3.1416
>> xrange=16*pi
xrange = 50.265
>> step=xrange/128
step = 0.3927
>> x=0:step:xrange;
>> y=sin(x);
>> comet(x,y)

 100_003 Introd_Crypto Page 4

>> p=genstrongprime(28)
p = 204105323
>> q=(p-1)/2
q = 102052661
>> isprime(q)
ans = 1
>> isprime(p)
ans = 1
>> p=2*q+1
p = 204105323

>> mod(17,11)
ans = 6

Multiplication Tab.
Z11*

* 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 1 3 5 7 9

3 3 6 9 1 4 7 10 2 5 8

4 4 8 1 5 9 2 6 10 3 7

5 5 10 4 9 3 8 2 7 1 6

6 6 1 7 2 8 3 9 4 10 5

7 7 3 10 6 2 9 5 1 8 4

8 8 5 2 10 7 4 1 9 6 3

9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

Power
Tab. Z11*

^ 0 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 4 8 5 10 9 7 3 6 1

3 1 3 9 5 4 1 3 9 5 4 1

4 1 4 5 9 3 1 4 5 9 3 1

5 1 5 3 4 9 1 5 3 4 9 1

6 1 6 3 7 9 10 5 8 4 2 1

7 1 7 5 2 3 10 4 6 9 8 1

8 1 8 9 6 4 10 3 2 5 7 1

9 1 9 4 3 5 1 9 4 3 5 1

10 1 10 1 10 1 10 1 10 1 10 1

 100_003 Introd_Crypto Page 5

Asymmetric Encryption - Decryption
C=Enc(PuKA, m)
m=Dec(PrKA, c)

Asymmetric Signing - Verification
S=Sig(PrKA, m)

V=Ver(PuKA, m, s), V{True, False}  {1, 0}

C.5.3 Finding generators.
We have to look inside ZP* and find a generator. How?
Even if we have a candidate, how do we test it?
The condition is that <g> = G which would take |G| steps to check: p~22048 --> |G|~22048.
In fact, finding a generator given p is in general a hard problem.

We can exploit the particular prime numbers names as strong primes.
If p is prime and p=2q+1 with q prime then p is a strong prime.
Note that the order of the group ZP* is p-1=2q, i.e. |ZP*|=2q.
Fact C.23. Say p=2q+1 is strong prime where q = (p-1)/2 is prime, then g in ZP* is a generator of ZP*
iff
g2≠ 1 mod p and gq ≠ 1 mod p .
Testing whether g is a generator is easy given strong prime p.
Now, given p=2q+1, the generator can be found by randomly generation numbers g<p and verifying
two relations.The probability to find a generator is ~0.4.

How to fing more generators when g one is found?
Fact C.24. If g is a generator and i is not divisible by q and 2 then gi is a generator as well, i.e.
 If g is a generator and gcd(i,q)=1 and gcd(i,2)=1, then gi is a generator as well.

Till this plaace

 100_003 Introd_Crypto Page 6

Zether: Towards Privacy in a Smart Contract World

Benedikt Bunz1, Shashank Agrawal2, Mahdi Zamani3, and Dan Boneh4

 100_003 Introd_Crypto Page 7

Fully Homomorphic Encryption

Database Query

Database Encryption

1Stanford University, benedikt@cs.stanford.edu
2Visa Research, shaagraw@visa.com
3Visa Research, mzamani@visa.com
4Stanford University, dabo@cs.stanford.edu

Ctrl/F --> ElGamal --> Exact mathes 21

--

 100_003 Introd_Crypto Page 8

Order-Revealing Encryption - OREnc

Database encryption has received increased attention recently due to the enormous amount of
sensitive data stored in outsourcing cloud databases. One of promising solutions to protect the
confidentiality of sensitive data is to use encryption and performing query evaluation over
encrypted data.
Order-Preserving Encryption. Property-preserving encryption which preserves some property of

 100_003 Introd_Crypto Page 9

Order-Preserving Encryption. Property-preserving encryption which preserves some property of
plaintexts enables performing query evaluation on ciphertexts. Among them, order-preserving
encryption (OPEnc) whose ciphertexts preserve the numerical ordering of their underlying
plaintexts has received a lot of attention since it can support efficient query operation on
encrypted data such as sorting and range queries using the ordering information. In 2004,
Agrawal et al. first proposed the concept of OPEnc. Later, Boldyreva et al. provided the security
notions of OPEnc formally and also showed that any immutable OPEnc schemes with ideal
security must have the ciphertext length which grows exponentially in the plaintext length.
Recently, some ideally-secure OPEnc schemes whose ciphertexts reveal no additional
information beyond the order of the underlying plaintexts have been proposed. However, these
schemes require large communication and storage complexities.

A new ideally-secure OREncS scheme with shorter ciphertexts is proposed in 2020. Combining it
with the domain-extension scheme the new OREncL scheme with shorter ciphertexts under the
same security level is obtained ...

kBW = k2

 100_003 Introd_Crypto Page 10

